Multi-Objective Optimization in Ultrasonic Polishing of Silicon Carbide via Taguchi Method and Grey Relational Analysis

Author:

Chen Xin1,Xu Shucong2,Meng Fanwei1,Yu Tianbiao1,Zhao Ji1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

As high-level equipment and advanced technologies continue toward sophistication, ultrasonic technology is extensively used in the polishing process of difficult-to-process materials to achieve efficiently smooth surfaces with nanometer roughness. The polishing of silicon carbide, an indispensable difficult-to-machine optical material, is extremely challenging due to its high hardness and good wear resistance. To overcome the current silicon carbide (SiC) ultrasonic polishing (UP) process deficiencies and strengthen the competitiveness of the UP industry, the multi-objective optimization based on the Taguchi–GRA method for the UP process with SiC ceramic to obtain the optimal process parameter combination is a vital and urgently demanded task. The orthogonal experiment, analysis of variance, grey relational analysis (GRA), and validation were performed to optimize the UP schemes. For a single objective of roughness and removal rate, the influence degree is abrasive size > preloading force > abrasive content > spindle speed > feed rate, and spindle speed > abrasive size > feed rate > preloading force > abrasive content, respectively. Moreover, the optimal process combination integrating these two objectives is an abrasive content of 14 wt%, abrasive size of 2.5 μm, preloading force of 80 N, spindle speed of 8000 rpm, and feed rate of 1 mm/s. The optimized workpiece surface morphology is better, and the roughness and removal rate are increased by 7.14% and 28.34%, respectively, compared to the best orthogonal group. The Taguchi–GRA method provides a more scientific approach for evaluating the comprehensive performance of polishing. The optimized process parameters have essential relevance for the ultrasonic polishing of SiC materials.

Funder

the Major State Basic Research Development Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3