Revolutionizing the Role of Solar Light Responsive BiVO4/BiOBr Heterojunction Photocatalyst for the Photocatalytic Deterioration of Tetracycline and Photoelectrocatalytic Water Splitting

Author:

Singla Shelly12,Devi Pooja1ORCID,Basu Soumen2ORCID

Affiliation:

1. Materials Science and Sensor Application, Central Scientific Instruments Organisation, Chandigarh 160030, India

2. School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India

Abstract

In this study, a series of BiVO4/BiOBr composites with varying mole ratios were successfully synthesized using a hydrothermal method. The in-situ synthesis strategy facilitated the formation of a close interfacial contact between BiVO4 and BiOBr at the depletion zone, resulting in improved charge segregation, migration, reduced charge recombination, enhanced solar light absorption capacity, promoting narrow band gap, and large surface area. This study investigates the influence of different mole ratios of BiVO4 and BiOBr in a BiVO4/BiOBr nanocomposite on the photocatalytic degradation of tetracycline (TC), a pharmaceutical pollutant, and photoelectrocatalytic water splitting (PEC) under solar light irradiation. Maximum decomposition efficiency of ~90.4% (with a rate constant of 0.0159 min−1) for TC was achieved with 0.5 g/L of 3:1 BiVO4: BiOBr (31BVBI) photocatalyst within 140 min. The degraded compounds resulting from the TC abatement were analyzed using GC-MS. Furthermore, TC standards exhibited 78.2% and 87.7% removal of chemical oxygen demand (COD) and total organic carbon (TOC), respectively, while TC tablets showed 64.6% COD removal and 73.8% TOC removal. The PEC water splitting experiments demonstrated that the 31BVBI photoanode achieved the highest photocurrent density of approximately 0.2198 mA/cm2 at 1.23 V vs. RHE, resulting in the generation of approximately 1.864 mmolcm−2 s−1 of hydrogen, while remaining stable for 21,600 s. The stability of the photocatalyst was confirmed by post-degradation characterizations, which revealed intact crystalline planes, shape, and surface area. Comparisons with existing physicochemical methods used in industries indicate that the reported photocatalyst possesses strong surface catalytic properties and has the potential for application in industrial wastewater treatment and hydrogen generation, offering an advantageous alternative to costly and time-consuming processes.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3