Effect of Basalt Fibres on Thermal and Mechanical Properties of Recycled Multi-Material Packaging

Author:

Sergi Claudia,Tirillò JacopoORCID,Valente Teodoro,Sarasini FabrizioORCID

Abstract

The low-density polyethylene (LDPE)/aluminium mix obtained after the recovery of cellulose from multilayer aseptic packaging used in the food and beverage industry is generally destined for energy recovery. In this work we propose it as a matrix for value-added composite materials. A commercially available material (EcoAllene) obtained from multilayer packaging recycling was reinforced with short natural basalt fibres up to 30 wt.% by twin screw extrusion, aiming at improving the mechanical profile of such material and widening its applications. Thermal characterizations by thermogravimetric analysis and differential scanning calorimetry showed that the material is indeed a complex mixture of LDPE, HDPE, PP, and aluminium. Basalt fibres did not modify the melting and crystallization profile as well as the global degradation behaviour. Composites were then subjected to tensile, bending, Charpy impact tests and the fracture surfaces were investigated by scanning electron microscopy. Results highlighted a beneficial effect of basalt fibres to stiffness and strength in both loading conditions, with improvements by 107% and 162% for tensile and bending strength, respectively, which were linked also to a 45% enhancement of impact strength. This increased mechanical performance is promising for their use in automotive interiors and outdoor decking applications.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference36 articles.

1. Eurostat Packaging Waste Statistics https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Packaging_waste_statistics

2. Recycling of post-consumer multilayer Tetra Pak® packaging with the Selective Dissolution-Precipitation process

3. Alliance for Beverage Cartons and the Environment https://www.beveragecarton.eu/policy-areas/recycling/

4. Recycling of Aseptic Beverage Cartons: A Review

5. Recycling of Tetra pak wastes via pyrolysis: Characterization of solid products and application of the resulting char in the adsorption of mercury from water

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3