On Numerical Models for Cube Drop Test of Bladder Fuel Tank for Aeronautical Applications

Author:

Cristillo Domenico,Di Caprio FrancescoORCID,Pezzella Claudio,Paciello Carmen,Magistro Simone,Di Palma LuigiORCID,Belardo Marika

Abstract

For some categories of aircraft, such as helicopters and tiltrotors, fuel storage systems must satisfy challenging crash resistance requirements in order to reduce or eliminate the possibility of fuel fires and thus increase the chances of passenger survival. Therefore, for such applications, fuel tanks with high flexibility (bladder) are increasingly used, which are able to withstand catastrophic events and avoid fuel leakages. The verification of these capabilities must be demonstrated by means of experimental tests, such as the cube drop test (MIL-DTL-27422). In order to reduce development costs, it is necessary to execute experimental tests with a high confidence of success, and, therefore, it is essential to have reliable and robust numerical analysis methodologies. The present work aims to provide a comparison between two explicit FE codes (i.e., Abaqus and Ls-Dyna), which are the most frequently used for such applications according to experimental data in the literature. Both codes offer different material models suitable for simulating the tank structure, and therefore, the most suitable one must be selected by means of a specific trade-off and calibration activity. Both are able to accurately simulate the complex fluid–structure interaction thanks to the use of the SPH approach, even if the resulting sloshing capabilities are quite different from each other. Additionally, the evolution of the tank’s deformed shape highlights some differences, and, in particular, Abaqus seems to return a more natural and less artificial behavior. For both codes, the error in terms of maximum impact force is less than 5%, but, even in this case, Abaqus is able to return slightly more accurate results.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Reference24 articles.

1. T-WING: In Conversation with CIRA https://www.cleansky.eu/clean-skys-t-wing-in-conversation-with-cira

2. ANALYSIS: Leonardo Helicopters Advances on Next-Gen Tiltrotor https://www.flightglobal.com/analysis/analysis-leonardo-helicopters-advances-on-next-gen-tiltrotor/131350.article

3. Wing Structure of the Next-Generation Civil Tiltrotor: From Concept to Preliminary Design

4. How the V-22 Osprey Works. HowStuffWorks https://science.howstuffworks.com/osprey.html

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3