Affiliation:
1. Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. College of Horticulture, Shanxi Agricultural University, Taiyuan 030801, China
3. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Abstract
The issue of emitter clogging is a common phenomenon in drip fertigation systems, which causes uneven irrigation and fertilization. However, efficient and environmentally friendly methods are scarcely available for alleviating clogging. In the present study, we investigated the anti-fouling efficacy of three magnetic field strength levels (0, 0.4 T and 0.6 T) on emitter clogging in drip fertigation systems. Our results show that magnetized water treatment could effectively relieve emitter clogging and delay the occurrence time of clogging, which increased the average discharge variation rate (Dra) by 37.00–61.64% and decreased the dry weight (DW) by 53.00–69.29% compared with non-magnetized water treatments. X-rays were used to estimate the compositions of the main clogging substances, and the results show that phosphates were the dominant substances that induced emitter clogging. In addition, magnetized water treatment effectively reduced the contents of chemical and particulate fouling, as exhibited by a decrease in phosphates, silicate and quartz by 53.17–69.58%, 47.22–61.95% and 43.18–74.80%, respectively. In comparison, the higher strength of magnetized water treatment (0.6 T) was better in clogging control, which increased Dra and the Christiansen of uniformity (CU) by 24.64% and 43.96%, respectively, and the DW was reduced by 34.67% compared with that of 0.4 T. This study proves that magnetized water treatment is an effective, chemical-free treatment method with great potential for fouling control technology, and it is helpful for the further promotion of drip fertigation technology.
Funder
National Natural Science Foundation of China
Reserve Project of Beijing Academy of Agriculture and Forestry Sciences
Beijing Digital Agriculture Innovation team digital facilities application scene construction post
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献