SARClust—A New Tool to Analyze InSAR Displacement Time Series for Structure Monitoring

Author:

Roque Dora1ORCID,Falcão Ana Paula2ORCID,Perissin Daniele3,Amado Conceição4ORCID,Lemos José V.1ORCID,Fonseca Ana1

Affiliation:

1. National Laboratory for Civil Engineering, 1700-066 Lisboa, Portugal

2. Department of Civil Engineering, Architecture and Georesources and CERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

3. RASER Limited, Hong Kong, China

4. Department of Mathematics and CEMAT, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal

Abstract

Interferometric Synthetic Aperture Radar (InSAR) has proved its efficiency for displacement monitoring in urban areas. However, the large volume of data generated by this technology turns the retrieval of information useful for structure monitoring into a big data problem. In this study, a new tool (SARClust) to analyze InSAR displacement time series is proposed. The tool performs the clustering of persistent scatterers (PSs) based on dissimilarities between their displacement time series evaluated through dynamic time warping. This strategy leads to the formation of clusters containing PSs with similar displacements, which can be analyzed together, reducing data dimensionality, and facilitating the identification of displacement patterns potentially related to structural damage. A proof of concept was performed for downtown Lisbon, Portugal, where ten distinct displacement patterns were identified. A relationship between clusters presenting centimeter-level displacements and buildings located on steep slopes was observed. The results were validated through visual inspections and comparison with another tool for time series analysis. Agreement was found in both cases. The innovation in this study is the attention brought to SARClust’s ability to (i) analyze vertical and horizontal displacements simultaneously, using an unsupervised procedure, and (ii) characterize PSs assisting the displacement interpretation. The main finding is the strategy to identify signs of structure damage, even on isolated buildings, in a large amount of InSAR data. In conclusion, SARClust is of the utmost importance to detect potential signs of structural damage in InSAR displacement time series, supporting structure safety experts in more efficient and sustainable monitoring tasks.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3