Generation of Pearl/Calcium Phosphate Composite Particles and Their Integration into Porous Chitosan Scaffolds for Bone Regeneration

Author:

Li Zhiyi1,Ur Rehman Ihtesham2ORCID,Shepherd Rebecca3ORCID,Douglas Timothy E. L.1

Affiliation:

1. School of Engineering, Lancaster University, Lancaster LA1 4YW, UK

2. School of Medicine and Dentistry, University of Central Lancashire, Preston PR1 2HE, UK

3. School of Anatomy, Faculty of Health and Life Sciences, University of Bristol, Bristol BS8 1QU, UK

Abstract

Bone tissue engineering using osteoconductive scaffolds holds promise for regeneration, with pearl powder gaining interest for its bioactive qualities. This study used freeze drying to create chitosan (CS) scaffolds with pearl/calcium phosphate (p/CaP) powders, mimicking bone tissue structurally and compositionally. Characterization included scanning electron microscopy (SEM) and mechanical testing. X-ray diffraction (XRD) Fourier-transform infrared–photoacoustic photo-acoustic sampling (FTIR−PAS), and FTIR- attenuated total reflectance (FTIR-ATR) were used to characterize p/CaP. In vitro tests covered degradation, cell activity, and SEM analysis. The scaffolds showed notable compressive strength and modulus enhancements with increasing p/CaP content. Porosity, ranging from 60% to 90%, decreased significantly at higher pearl/CaP ratios. Optimal cell proliferation and differentiation were observed with scaffolds containing up to 30 wt.% p/CaP, with 30 wt.% pearl powder and 30 wt.% p/CaP yielding the best results. In conclusion, pearl/calcium phosphate chitosan (p/CaP_CS) composite scaffolds emerged as promising biomaterials for bone tissue engineering, combining structural mimicry and favourable biological responses.

Publisher

MDPI AG

Reference61 articles.

1. Dimitriou, R., Jones, E., McGonagle, D., and Giannoudis, P.V. (2011). Bone regeneration: Current concepts and future directions. BMC Med., 9.

2. Tissue-engineered bone regeneration;Petite;Nat. Biotechnol.,2000

3. Bone grafts and biomaterials substitutes for bone defect repair: A review;Wang;Bioact. Mater.,2017

4. Designing materials for biology and medicine;Langer;Nature,2004

5. Lanza, R., Langer, R., Vacanti, J.P., and Atala, A. (2020). Principles of Tissue Engineering, Academic Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3