In Vitro Effects of Weissella cibaria CMU and CMS1 on Receptor Activator of NF-κB Ligand (RANKL)-Induced Osteoclast Differentiation

Author:

Park Geun-Yeong1,Park Jeong-Ae1,Kang Mi-Sun1

Affiliation:

1. R&D Center, OraTicx, Inc., Seoul 04782, Republic of Korea

Abstract

Excessive osteoclast activity can promote periodontitis-associated bone destruction. The inhibitory mechanisms of Weissella cibaria strains CMU and CMS1 against periodontitis have not yet been fully elucidated. In this study, we aimed to investigate whether heat-killed (HK) W. cibaria CMU and CMS1 or their respective cell-free supernatants (CFSs) inhibit osteoclast differentiation and bone resorption in response to receptor activator of nuclear factor kappa-B ligand (RANKL)-treated RAW 264.7 cells. TRAP (tartrate-resistant acid phosphatase) staining and bone resorption assays revealed that both HK bacteria and CFSs significantly suppressed the number of TRAP-positive cells, TRAP activity, and bone pit formation compared to the RANKL-treated control (p < 0.05). HK bacteria dose-dependently inhibited osteoclastogenesis while selectively regulating certain genes in CFSs (p < 0.05). We found that disrupting the direct interaction between HK bacteria and RAW 264.7 cells abolished the inhibitory effect of HK bacteria on the expression of osteoclastogenesis-associated proteins (c-Fos, nuclear factor of activated T cells c1 (NFATc1), and cathepsin K). These results suggest that dead bacteria suppress osteoclast differentiation more effectively than the metabolites and may serve as beneficial agents in preventing periodontitis by inhibiting osteoclast differentiation via direct interaction with cells.

Funder

Ministry of Small and Medium Enterprises (SMEs) and Startups

Publisher

MDPI AG

Reference39 articles.

1. Prevalence of periodontal disease, its association with systemic diseases and prevention;Nazir;Int. J. Health Sci.,2017

2. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression;Kassebaum;J. Dent. Res.,2014

3. Inflammasomes in alveolar bone loss;Li;Front. Immunol.,2021

4. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems;Takayanagi;Nat. Rev. Immunol.,2007

5. The cell biology of bone metabolism;Datta;J. Clin. Pathol.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3