Active and Passive Mineralization of Bio-Gide® Membranes in Rat Calvaria Defects

Author:

Apaza Alccayhuaman Karol Ali12ORCID,Heimel Patrick234ORCID,Tangl Stefan23ORCID,Lettner Stefan23ORCID,Kampleitner Carina234ORCID,Panahipour Layla1ORCID,Kuchler Ulrike5,Gruber Reinhard136

Affiliation:

1. Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria

2. Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria

3. Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria

4. Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria

5. Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria

6. Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland

Abstract

Bio-Gide® is a collagen membrane routinely used in guided bone regeneration. Recent studies have shown that this collagen membrane has osteoconductive properties, meaning that it can support the growth of new bone. However, it has also been observed that the collagen membrane has areas of mineralized fibers which can occur spontaneously and independently of osteoblasts. To better understand how this works, we established a model using minced collagen membranes to reduce the active mineralization of intact collagen membranes in favor of passive mineralization. We thus compared the original intact membrane with a minced collagen membrane in a 5 mm calvarial defect model in Sprague Dawley rats. After three weeks of healing, histology and microcomputed tomography (μCT) were performed. Histological analysis confirmed the osteoconductive properties, with new bone growing inside the intact collagen membrane. However, in minced collagen membranes, the osteoconductive properties were restricted to the defect margins. Interestingly, histology revealed large mineralized areas indicating passive mineralization with no signs of bone formation. In the μCT analysis, the intact collagen membranes caused a higher median mineralized volume (1.5 mm3) compared with the minced group (0.4 mm3), but this lacked significance (p = 0.09). The μCT analysis needs to be interpreted carefully, particularly in defects filled with minced membranes, considering that the mineralized tissue may not necessarily be bone but also the result of passive mineralization. Taken together, the findings suggest that Bio-Gide® collagen membranes support bone formation while also exhibiting potential for passive mineralization.

Funder

ITI

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3