Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite

Author:

Perdahcıoğlu Emin SemihORCID,Geijselaers Hubert J. M.ORCID

Abstract

The retained austenite (RA) in advanced high-strength steel (AHSS) grades, such as dual-phase (DP) steels, plays an important role on their formability. Thanks to the transformation-induced plasticity (TRIP) effect that occurs during the mechanically induced transformation of RA into martensite, additional ductility is obtained. Martensite has a higher flow stress than austenite; hence, the transformation results in an apparent hardening, which is beneficial for the stability of deformation. The stability of RA at a given temperature strongly depends on its carbon content, which, in AHSS, is not uniform but distributed. The aim of this study is to build a model that predicts the transformation as well as TRIP in a DP steel grade with RA. A physics-based kinetic model is presented that captures the transformation of retained austenite based on the thermodynamic driving force of the applied stress. A direct analytical estimate of transformation plasticity is provided, which is consistent with the kinetic model. Transformation kinetics is incorporated in a self-consistent, mean-field homogenization-based constitutive model. Finally, an indication of the effect of transformation of retained austenite on formability is given.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3