A Practice-Distributed Thunder-Localization System with Crowd-Sourced Smart IoT Devices

Author:

Lu Bingxian1ORCID,Wang Ruochen1,Qin Zhenquan1ORCID,Wang Lei1

Affiliation:

1. School of Software, Dalian University of Technology, Dalian 116000, China

Abstract

Lightning localization is of great significance to weather forecasting, forest fire prevention, aviation, military, and other aspects. Traditional lightning localization requires the deployment of base stations and expensive measurement equipment. With the development of IoT technology and the continuous expansion of application scenarios, IoT devices can be interconnected through sensors and other technical means to ultimately achieve the goal of automatic intelligent computing. Therefore, this paper proposes a low-cost distributed thunder-localization system based on IoT smart devices, namely ThunderLoc. The main idea of ThunderLoc is to collect dual-microphone data from IoT smart devices, such as smartphones or smart speakers, through crowdsourcing, turning the localization problem into a search problem in Hamming space. We studied the dual microphones integrated with smartphones and used the sign of Time Difference Of Arrival (TDOA) as measurement information. Through a simple generalized cross-correlation method, the TDOA of thunderclaps on the same smartphone can be estimated. After quantifying the TDOA measurement from the smartphone node, thunder localization was performed by minimizing the Hamming distance between the binary sequence and the binary vector measured in a database. The ThunderLoc system was evaluated through extensive simulations and experiments (a testbed with 30 smartphone nodes). The extensive experimental results demonstrate that ThunderLoc outperforms the main existing schemes in terms of effectively locating position and good robustness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3