Effects of B2O3 on Melting Characteristics and Temperature-Dependent Viscosity of High-Basicity CaO–SiO2–FeOx–MgO Slag

Author:

Chong Junkai,Shen YingyingORCID,Yang Peng,Tian Jianke,Zhang Wenjuan,Tang Xingchang,Du Xueyan

Abstract

In order to reduce the amount of fluorite during the steelmaking process for environmental protection, it is essential to investigate the fluorine-free slag system. Thus, high-basicity CaO–SiO2–FeOx–MgO slag with B2O3 content from 0% to 15% was designed, and its melting characteristics and viscosity were investigated. The influence of B2O3 content on the phase diagram of the slag system was calculated using FactSage 7.3, and the break temperature was determined from the curves of temperature-dependent viscosity. The results show that, with the increase in B2O3 content, the melting characteristics of the CaO–SiO2–FeOx–MgO/B2O3 slag system, including liquidus temperature, flow temperature, softening temperature, and hemispheric temperature, all decreased; the main phase of the slag system transformed from Ca2SiO4 into borosilicate, and finally into borate; the viscous flow activation energy reduced from 690 kJ to 130 kJ; the break temperature reduced from 1590 °C to 1160 °C. Furthermore, the melting characteristics and the break temperature of the slag system with 5% and 8% B2O3 content were found to be the closest to the values of fluorine-containing steel slag.

Funder

National Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. Steel statistical yearbook 2019 concise versionhttps://www.worldsteel.org/zh/steel-by-topic/statistics/steel-statistical-yearbook.html

2. Fluorite Resources in China and its Industrial Development Status;Wang;Met. Mine (Chin.),2014

3. Development of Fluoride-Free Fluxes for Billet Casting

4. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3