Discrete Element Simulation and Validation of a Mixing Process of Granular Materials

Author:

Chen JianORCID,Furuichi Mikito,Nishiura DaisukeORCID

Abstract

The mixing processes of granular materials have gained wide interest among various fields of science and engineering. In this study, our focus is a mixing process for offshore mining. We conducted numerical simulations using the discrete element method (DEM) in comparison with experimental works on mixing color sand. Careful calibration of initial packing densities has been performed for the simulations. For validation, the steady-state torques on the mixer head, the maximal increase of surface height after mixing, and the surface mixing patterns have been compared. The effect of particle size on the simulation results has been clarified. With the particle size approaching the actual particle size, consistent torques and mixing patterns indicate the capability of the DEM code for studying the particular mixing process, while the results for the maximal increase of surface height should be interpreted with more caution.

Funder

Council for Science, Technology and Innovation

Publisher

MDPI AG

Subject

General Materials Science

Reference28 articles.

1. The Science and Engineering of Granulation Processes;Litster,2004

2. Handbook of Pharmaceutical Granulation Technology;Parikh,2005

3. Effects of blade rake angle and gap on particle mixing in a cylindrical mixer

4. Mixing characteristics of wet granular matter in a bladed mixer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3