Author:
Hou Xinkai,Wang Dan,Shi Yiming,Guo Haitao,He Yingying
Abstract
To explain the relationship between the hydration activity of high-titanium slag and its microstructure, the hydration activity of high-titanium slag was determined, then the mineral phase and microstructure characteristics of high-titanium slag glass phase and blast furnace slag were investigated using a series of analytical methods, which contain X-Ray Diffraction (XRD), Scanning Electronic Microscope (SEM), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, and Nuclear Magnetic Resonance spectroscopy (NMR). The results showed that in slow-cooled high-titanium slag, the hydration inert mineral content was about 98%, and the glass phase content was less than 2%, hence, the hydration activity of slow-cooled high titanium slag accounted for less than 25% of that of the blast furnace slag. The content of the glass phase in water-quenched high-titanium slag was 98%, but the microstructure of the glass phase was very different from that of the blast furnace slag. The glass phase of high-titanium slag has stable forms, which are TiO44− monomers, chain or sheet units O–Ti–O, and a small amount of 6-coordination Ti4+. The Ti makes the SiO4 tetrahedron in a glass phase network not only a monosilicate, but more stable forms of disilicates and chain middle groups also appeared. The relative bridge oxygen number increased to 0.2, hence, the hydration activity of water-quenched high-titanium slag took up less than 37% of that of the blast furnace slag.
Funder
Shaanxi Province Science and Technology Innovation Plan
Subject
General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献