The Influence of Plasma-Assisted Production and Milling Processes of DLC Flakes on Their Size, Composition and Chemical Structure

Author:

Kaźmierczak Tomasz,Niedzielski Piotr,Kaczorowski WitoldORCID

Abstract

Diamond-like carbon (DLC) flakes were produced using a dual-frequency method: microwave/radiofrequency plasma-assisted chemical vapour deposition (MW/RF PACVD) with the use of methane or its mixture with gases such as hydrogen, argon, oxygen or nitrogen. Their modification was performed using a planetary ball mill with and without a fluid: deionised water or methanol. Changes occurring in the morphology of flake surfaces were presented in pictures taken using a scanning electron microscope (SEM). Their composition and chemical structure were analysed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The presented research results show that it is possible to control the size of flakes and their chemical structure. An increase in the C-C sp3 bond content in produced carbon-based materials is only possible by modifying DLC flakes during their production process by introducing oxygen or argon into the working chamber together with the carbon-carrying gas. In the processes of mechanical DLC flake modification, it is necessary to add fluid to limit the occurrence of graphitisation processes. The research conducted shows that methanol is best used for this purpose as its use results in a decrease in the percentage of C-C sp3 bonds as compared to the materials, before milling, of only 1.7%. A frequent problem both in the production of DLC flakes and during their mechanical modification is the introduction of additional elements into their structure. Admixing electrode materials from the plasma-chemical device (iron) or grinding beads (zirconium) to DLC flakes was observed in our studies. These processes can be limited by the appropriate selection of production conditions or by mechanical modifications.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3