A Combination of Remote Sensing Datasets for Coastal Marine Habitat Mapping Using Random Forest Algorithm in Pistolet Bay, Canada

Author:

Mahdavi Sahel1,Amani Meisam12ORCID,Parsian Saeid13,MacDonald Candace4,Teasdale Michael5,So Justin5,Zhang Fan1ORCID,Gullage Mardi6

Affiliation:

1. WSP Canada Inc., Ottawa, ON K2E 7L5, Canada

2. Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, ON K1A 0E8, Canada

3. Department of Geography & Environment, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

4. CBCL Limited, Halifax, NS B3J 2R7, Canada

5. WSP Canada Inc., St. John’s, NL A1B 4C1, Canada

6. Fisheries and Oceans Canada, St. John’s, NL A1C 5X1, Canada

Abstract

Marine ecosystems serve as vital indicators of biodiversity, providing habitats for diverse flora and fauna. Canada’s extensive coastal regions encompass a rich range of marine habitats, necessitating accurate mapping techniques utilizing advanced technologies, such as remote sensing (RS). This study focused on a study area in Pistolet Bay in Newfoundland and Labrador (NL), Canada, with an area of approximately 170 km2 and depths varying between 0 and −28 m. Considering the relatively large coverage and shallow depths of water of the study area, it was decided to use airborne bathymetric Light Detection and Ranging (LiDAR) data, which used green laser pulses, to map the marine habitats in this region. Along with this LiDAR data, Remotely Operated Vehicle (ROV) footage, high-resolution multispectral drone imagery, true color Google Earth (GE) imagery, and shoreline survey data were also collected. These datasets were preprocessed and categorized into five classes of Eelgrass, Rockweed, Kelp, Other vegetation, and Non-Vegetation. A marine habitat map of the study area was generated using the features extracted from LiDAR data, such as intensity, depth, slope, and canopy height, using an object-based Random Forest (RF) algorithm. Despite multiple challenges, the resulting habitat map exhibited a commendable classification accuracy of 89%. This underscores the efficacy of the developed Artificial Intelligence (AI) model for future marine habitat mapping endeavors across the country.

Funder

Fisheries and Oceans Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3