Contrasting the Effects of X-Band Phased Array Radar and S-Band Doppler Radar Data Assimilation on Rainstorm Forecasting in the Pearl River Delta

Author:

He Liangtao1,Min Jinzhong1,Yang Gangjie1ORCID,Cao Yujie1

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Contrasting the X-band phased array radar (XPAR) with the conventional S-Band dual-polarization mechanical scanning radar (SMSR), the XPAR offers superior temporal and spatial resolution, enabling a more refined depiction of the internal dynamics within convective systems. While both SMSR and XPAR data are extensively used in monitoring and alerting for severe convective weather, their comparative application in numerical weather prediction through data assimilation remains a relatively unexplored area. This study harnesses the Weather Research and Forecasting Model (WRF) and its data assimilation system (WRFDA) to integrate radial velocity and reflectivity from the Guangzhou SMSR and nine XPARs across Guangdong Province. Utilizing a three-dimensional variational approach at a 1 km convective-scale grid, the assimilated data are applied to forecast a rainstorm event in the Pearl River Delta (PRD) on 6 June 2022. Through a comparative analysis of the results from assimilating SMSR and XPAR data, it was observed that the assimilation of SMSR data led to more extensive adjustments in the lower- and middle-level wind fields compared to XPAR data assimilation. This resulted in an enlarged convergence area at lower levels, prompting an overdevelopment of convective systems and an excessive concentration of internal hydrometeor particles, which in turn led to spurious precipitation forecasts. However, the sequential assimilation of both SMSR and XPAR data effectively reduced the excessive adjustments in the wind fields that were evident when only SMSR data were used. This approach diminished the generation of false echoes and enhanced the precision of quantitative precipitation forecasts. Additionally, the lower spectral width of XPAR data indicates its superior detection accuracy. Assimilating XPAR data alone yields more reasonable adjustments to the low- to middle-level wind fields, leading to the formation of small-to-medium-scale horizontal convergence lines in the lower levels of the analysis field. This enhancement significantly improves the model’s forecasts of composite reflectivity and radar echoes, aligning them more closely with actual observations. Consequently, the Threat Score (TS) and Equitable Threat Score (ETS) for heavy-rain forecasts (>10 mm/h) over the next 5 h are markedly enhanced. This study underscores the necessity of incorporating XPAR data assimilation in numerical weather prediction practices and lays the groundwork for the future joint assimilation of SMSR and XPAR data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3