Impact Analysis of Vegetation FVC Changes and Drivers in the Ring-Tarim Basin from 1993 to 2021

Author:

Xi Lei123ORCID,Qi Zhao123,Cao Xiaoming123,Cui Mengcun123,Zou Jiaxiu123,Feng Yiming123ORCID

Affiliation:

1. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

2. Institute of Ecological Protection and Restoration, Chinese Academy of Forestry, Beijing 100091, China

3. Key Laboratory of State Forestry and Grassland Administration on Desert Ecosystem and Global Change, Beijing 100091, China

Abstract

As an ecologically sensitive area with significant desertification problems, the Ring-Tarim Basin has a fragile ecological environment that is vulnerable to both natural and anthropogenic factors. Accurate long-term vegetation observations are ecologically, socially, and economically important for desertification control. In this study, based on the ground-measured data and the fractional vegetation cover (FVC) inversion dataset obtained by the image element dichotomy method, we used the methods of slope-trend analysis and multiple-regression residual analysis to analyze the spatial and temporal characteristics of the vegetation cover in the desertified area of the Ring-Tarim Basin. At the same time, we assessed the impacts of climate change and human activities on vegetation changes and the contribution of driving forces. The results showed that (1) The annual mean value of FVC in the growing season in the Ring-Tarim Basin generally showed a fluctuating and increasing trend during the period of 1993–2021; a decreasing trend during 1993–1999, with a change rate of −0.13 × 10−2a−1; and the fastest increasing trend during 2010–2021, with a change rate of 0.23 × 10−2a−1. (2) The effects of climate change and human activities on FVC changes in the growing season had great spatial heterogeneity. The areas where climate change and human activities had no significant effect on FVC changes in the growing season accounted for 86.25% and 77.91%, respectively, the areas where climate and human activities promoted FVC increase in the growing season accounted for 10.53% and 16.37%, respectively, and the areas where climate and human activities inhibited FVC increase in the growing season accounted for 3.22% and 5.72%, respectively. (3) About 76.9% of the FVC changes in the area around the Ring-Tarim Basin were caused by climate change and human activities. In addition to the eastern part of the study area, the vegetation cover of the oases in the west, north, and south generally showed an increasing trend, and the increasing area was proportional to the distribution density of the oasis cities. The trend of vegetation change in the area of the oasis and the fringes of the oasis was drastic. The contribution and inhibition of human activities to FVC, and the driving force of FVC change were greater than that of climate change. More than half of the area had an anthropogenic contribution of more than 60%, indicating that China’s ecological projects have had a significant effect on vegetation change in the extreme arid regions.

Funder

Third Xingjiang Scientific Expedition and Research Program

National Forestry and Grassland Science Data Center Desert Sub-Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3