A Novel Mamba Architecture with a Semantic Transformer for Efficient Real-Time Remote Sensing Semantic Segmentation

Author:

Ding Hao1ORCID,Xia Bo1,Liu Weilin1,Zhang Zekai2,Zhang Jinglin123ORCID,Wang Xing1,Xu Sen4

Affiliation:

1. School of Information Science and Engineering, Linyi University, Linyi 276000, China

2. Department of Control Science and Engineering, Shandong University, Jinan 250061, China

3. Department of Information Science and Engineering, Shandong Research Institute of Industrial Technology, Jinan 250100, China

4. School of Information Engineering, Yancheng Institute of Technology, Yancheng 224051, China

Abstract

Real-time remote sensing segmentation technology is crucial for unmanned aerial vehicles (UAVs) in battlefield surveillance, land characterization observation, earthquake disaster assessment, etc., and can significantly enhance the application value of UAVs in military and civilian fields. To realize this potential, it is essential to develop real-time semantic segmentation methods that can be applied to resource-limited platforms, such as edge devices. The majority of mainstream real-time semantic segmentation methods rely on convolutional neural networks (CNNs) and transformers. However, CNNs cannot effectively capture long-range dependencies, while transformers have high computational complexity. This paper proposes a novel remote sensing Mamba architecture for real-time segmentation tasks in remote sensing, named RTMamba. Specifically, the backbone utilizes a Visual State-Space (VSS) block to extract deep features and maintains linear computational complexity, thereby capturing long-range contextual information. Additionally, a novel Inverted Triangle Pyramid Pooling (ITP) module is incorporated into the decoder. The ITP module can effectively filter redundant feature information and enhance the perception of objects and their boundaries in remote sensing images. Extensive experiments were conducted on three challenging aerial remote sensing segmentation benchmarks, including Vaihingen, Potsdam, and LoveDA. The results show that RTMamba achieves competitive performance advantages in terms of segmentation accuracy and inference speed compared to state-of-the-art CNN and transformer methods. To further validate the deployment potential of the model on embedded devices with limited resources, such as UAVs, we conducted tests on the Jetson AGX Orin edge device. The experimental results demonstrate that RTMamba achieves impressive real-time segmentation performance.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Jiangsu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3