Highly Stretchable and Robust Electrochemical Sensor Based on 3D Graphene Oxide–CNT Composite for Detecting Ammonium in Sweat

Author:

Hua Yunzhi1,Guan Mingxiang1,Xia Linzhong1,Chen Yu1,Mai Junhao2,Zhao Cong2,Liao Changrui34

Affiliation:

1. Shenzhen Institute of Information Technology, Shenzhen 518172, China

2. Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China

3. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

4. Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China

Abstract

Wearable electrochemical sensors have attracted tremendous attention and have been experiencing rapid growth in recent years. Sweat, one of the most suitable biological fluids for non-invasive monitoring, contains various chemical elements relating abundant information about human health conditions. In this work, a new type of non-invasive and highly stretchable potentiometric sweat sensor was developed based on all-solid-state ion-selective electrode (ISE) coupled with poly(dimethylsiloxane; PDMS) and polyurethane (PU). This highly stretchable composite of PDMS-PU allows the sensor to be robust, with the PDMS providing a flexible backbone and the PU enhancing the adhesion between the electrodes and the substrate. In addition, graphene–carbon nanotube (CNT) network 3D nanomaterials were introduced to modify the ion selective membrane (ISM) in order to increase the charge transfer activity of the ISEs, which also could minimize the formation of water layers on the electrode surface, as such nanomaterials are highly hydrophobic. As a result, the sensor demonstrated a wide detection range of NH4+ from 10−6 M to 10−1 M with high stability and sensitivity—showing a high sensitivity of 59.6 ± 1.5 mV/log [NH4+] and an LOD lower than 10−6 M. Under a strain of 40%, the sensor still showed a sensitivity of 42.7 ± 3.1 mV/log [NH4+]. The proposed highly stretchable and robust electrochemical sweat sensor provides a new choice for wearable-device-based personal daily healthcare management beyond hospital-centric healthcare monitoring.

Funder

PhD Research Startup Project of the Shenzhen Institute of Information Technology

High-Talent Research Funding

Project of Shenzhen Science and Technology Innovation Committee

Guangdong Basic and Applied Basic Research Foundation

National Natural Science Foundation of China

Science and Technology Innovation Commission of Shenzhen

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3