Opportunistic Sensor-Based Authentication Factors in and for the Internet of Things

Author:

Saideh Marc1ORCID,Jamont Jean-Paul2,Vercouter Laurent1

Affiliation:

1. INSA Rouen Normandie, Normandie Université, LITIS UR 4108, 76000 Rouen, France

2. Université Grenoble Alpes, LCIS, 26000 Valence, France

Abstract

Communication between connected objects in the Internet of Things (IoT) often requires secure and reliable authentication mechanisms to verify identities of entities and prevent unauthorized access to sensitive data and resources. Unlike other domains, IoT offers several advantages and opportunities, such as the ability to collect real-time data through numerous sensors. These data contains valuable information about the environment and other objects that, if used, can significantly enhance authentication processes. In this paper, we propose a novel idea to building opportunistic sensor-based authentication factors by leveraging existing IoT sensors in a system of systems approach. The objective is to highlight the promising prospects of opportunistic authentication factors in enhancing IoT security. We claim that sensors can be utilized to create additional authentication factors, thereby reinforcing existing object-to-object authentication mechanisms. By integrating these opportunistic sensor-based authentication factors into multi-factor authentication schemes, IoT security can be substantially improved. We demonstrate the feasibility and effectivenness of our idea through illustrative experiments in a parking entry scenario, involving both mobile robots and cars, achieving high identification accuracy. We highlight the potential of this novel method to improve IoT security and suggest future research directions for formalizing and comparing our approach with existing techniques.

Funder

French National Research Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3