Two-Layer Inkjet-Printed Microwave Split-Ring Resonators for Detecting Analyte Binding to the Gold Surface

Author:

Paul Matthias12ORCID,Kühnel Harald3ORCID,Oberpertinger Rudolf1,Mehofer Christoph4,Pollhammer Doris3,Wellenzohn Markus12

Affiliation:

1. Department of Engineering, Applied Electronics and Technical Informatics, University of Applied Sciences Vienna (FH Campus Wien), 1100 Vienna, Austria

2. Competence Center for IT-Security, Department of Engineering, University of Applied Sciences Vienna (FH Campus Wien), 1100 Vienna, Austria

3. Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Vienna (FH Campus Wien), 1100 Vienna, Austria

4. Department of Engineering, High Tech Manufacturing, University of Applied Sciences Vienna (FH Campus Wien), 1100 Vienna, Austria

Abstract

This work focuses on demonstrating the working principle of inkjet-printed Au nanoparticle (NP) two-layer Gigahertz (2.6 GHz) microwave split-ring resonators (SRRs) as a novel platform for the detection of analytes on flexible substrates. In contrast to the standard fabrication of split-ring resonator biosensors using printed circuit board technology, which results in a seven-layer system, the resonators in this work were fabricated using a two-layer system. A ground plane is embedded in the SRR measurement setup. In this method, a microwave electromagnetic wave is coupled into the Au SRR via an inkjet-printed Cu-NP stripline that is photonically sintered. This coupling mechanism facilitates the detection of analytes by inducing resonance shifts in the SRR. In this study, the functionality of the printed sensors was demonstrated using two different Au functionalization processes, firstly, with HS-PEG7500-COOH, and, secondly, with protein G with an N-terminal cysteine residue. The sensing capabilities of the printed structures are shown by the attachment of biomolecules to the SRR and the measurement of the resulting resonance shift. The experiments show a clear shift of the resonance frequency in the range of 20–30 MHz for both approaches. These results demonstrate the functionality of the simplified printed two-layer microwave split-ring resonator for use as a biosensor.

Funder

MA23—Wirtschaft, Arbeit, Statistik, project name “Digitalisierung durch gedruckte Elektronik”

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3