Identification of Extreme Droughts Based on a Coupled Hydrometeorology Index from GRACE-Derived TWSA and Precipitation in the Yellow River and Yangtze River Basins

Author:

Wu Shujun12,Dong Zengchuan1ORCID,Cai Chenkai3,Zhu Shengnan1,Shao Yiqing1,Meng Jinyu1,Amponsah Grace Efua2

Affiliation:

1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

2. Department of Agricultural and Biological Engineering, Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, USA

3. Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China

Abstract

Global climate change and human activities have exacerbated droughts’ environmental and socioeconomic threats. However, there is still a lack of effective techniques to consider their combined impacts on drought identification. Therefore, a new copula-based multivariate standardized drought index (CMSDI) was proposed, which integrates precipitation data and terrestrial water storage anomaly (TWSA) data observed by Gravity Recovery and Climate Experiment (GRACE) satellites. The applicability of the CMSDI was assessed compared with the water storage deficits index (WSDI), the self-calibration Palmer drought severity index (sc-PDSI), the standardized precipitation evapotranspiration index (SPEI), and the standardized precipitation index (SPI) in the Yellow River Basin (YRB) and the Yangtze River Basin (YZRB) for 2002–2020. The assessments were conducted regarding both temporal evolution and spatial distribution. The results showed that the CMSDI was more synchronized with the WSDI and SPI than with the other two indices and presented different trends and correlations in the YRB and YZRB. The CMSDI outperformed the other drought indices due to the limitations of the sc-PDSI, SPEI, and SPI in detecting certain drought events, and the greater inaccuracy of the WSDI in identifying extreme droughts. Furthermore, the CMSDI revealed a clear upward trend in parts of the middle and lower YRB and a clear downward trend in the upper YZRB, emphasizing the need for more attention to droughts in the YRB. This study presents a new perspective on the integrated use of satellite and measured data in drought monitoring across different regions.

Funder

China Scholarship Council

Water Conservancy Science and Technology Project of Hunan Province, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3