A Query-Based Network for Rural Homestead Extraction from VHR Remote Sensing Images

Author:

Wei Ren12,Fan Beilei12,Wang Yuting12,Yang Rongchao12

Affiliation:

1. Institute of Agricultural Information, Chinese Academy of Agricultural Sciences, Beijing 100876, China

2. Key Laboratory of Agricultural Blockchain Application, Ministry of Agriculture and Rural Affairs, Beijing 100125, China

Abstract

It is very significant for rural planning to accurately count the number and area of rural homesteads by means of automation. The development of deep learning makes it possible to achieve this goal. At present, many effective works have been conducted to extract building objects from VHR images using semantic segmentation technology, but they do not extract instance objects and do not work for densely distributed and overlapping rural homesteads. Most of the existing mainstream instance segmentation frameworks are based on the top-down structure. The model is complex and requires a large number of manually set thresholds. In order to solve the above difficult problems, we designed a simple query-based instance segmentation framework, QueryFormer, which includes an encoder and a decoder. A multi-scale deformable attention mechanism is incorporated into the encoder, resulting in significant computational savings, while also achieving effective results. In the decoder, we designed multiple groups, and used a Many-to-One label assignment method to make the image feature region be queried faster. Experiments show that our method achieves better performance (52.8AP) than the other most advanced models (+0.8AP) in the task of extracting rural homesteads in dense regions. This study shows that query-based instance segmentation framework has strong application potential in remote sensing images.

Funder

Innovation Research Fund of Agricultural Information Institute of CAAS, China

Central Public-interest Scientific Institution Basal Research Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3