Hot Deformation Behavior and Processing Maps of a New Ti-6Al-2Nb-2Zr-0.4B Titanium Alloy

Author:

Yang ZhijunORCID,Yu WeixinORCID,Lang Shaoting,Wei Junyi,Wang Guanglong,Ding Peng

Abstract

The hot deformation behaviors of a new Ti-6Al-2Nb-2Zr-0.4B titanium alloy in the strain rate range 0.01–10.0 s−1 and temperature range 850–1060 °C were evaluated using hot compressing testing on a Gleeble-3800 simulator at 60% of deformation degree. The flow stress characteristics of the alloy were analyzed according to the true stress–strain curve. The constitutive equation was established to describe the change of deformation temperature and flow stress with strain rate. The thermal deformation activation energy Q was equal to 551.7 kJ/mol. The constitutive equation was ε ˙=e54.41[sinh (0.01σ)]2.35exp(−551.7/RT). On the basis of the dynamic material model and the instability criterion, the processing maps were established at the strain of 0.5. The experimental results revealed that in the (α + β) region deformation, the power dissipation rate reached 53% in the range of 0.01–0.05 s−1 and temperature range of 920–980 °C, and the deformation mechanism was dynamic recovery. In the β region deformation, the power dissipation rate reached 48% in the range of 0.01–0.1 s−1 and temperature range of 1010–1040 °C, and the deformation mechanism involved dynamic recovery and dynamic recrystallization.

Funder

Key specialized research and development breakthrough in Henan province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3