Investigation of Forging Metal Specimens of Different Relative Reductions Using Ultrasonic Waves

Author:

Moravec JánORCID,Bury Peter,Černobila František

Abstract

Forgings produced in industry are an irreplaceable basis for subsequent elaborating on machine tools. The quality of the semi-finished product produced by forging is a necessary prerequisite for ensuring the final quality of the final product because the forging can produce some defects. The presented paper is aimed at investigation of selected characteristics of forging steel specimens for various levels of their relative reduction. Ultrasound testing belongs to methods for investigation of structure changes, including defects. Experimental investigation, using both the attenuation and velocity measurements, verify that the reduction of specimens’ material can have an effect on the propagation of ultrasound waves passing through the specimen body. The procedure of steel samples forging corresponds accordingly to the process of their hardening. The increase of toughness after relative reduction of forging in the range of 10–50% is with highest probability caused by the strength matrices development due to the relatively important deformation hardening. It is evident that the deformation hardening is almost the same after every 10% addition of relative reduction. Experiments are supplemented by Barkhausen noise detection and metallographic characteristics of the samples. While differences between the Barkhausen noise values are in principle relatively small and significant differences are only in the values of the position of the envelope, there is maximum coincidence with ultrasonic investigation.

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Physical Acoustics;Mason,1966

2. Ultrasonic Instruments and Devices;Papadakis,2001

3. Ultrasonic Methods in Solid State Physics;Truel,1969

4. Residual Lifetime of Girders M 140 after Long-Time Operation;Hamák,2000

5. Industrial Applications: Ultrasonic Inspection of Large Forgings;Senni,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3