Computational Approaches of Quasi-Static Compression Loading of SS316L Lattice Structures Made by Selective Laser Melting

Author:

Červinek OndřejORCID,Werner BenjaminORCID,Koutný DanielORCID,Vaverka Ondřej,Pantělejev Libor,Paloušek David

Abstract

Additive manufacturing methods (AM) allow the production of complex-shaped lattice structures from a wide range of materials with enhanced mechanical properties, e.g., high strength to relative density ratio. These structures can be modified for various applications considering a transfer of a specific load or to absorb a precise amount of energy with the required deformation pattern. However, the structure design requires knowledge of the relationship between nonlinear material properties and lattice structure geometrical imperfections affected by manufacturing process parameters. A detailed analytical and numerical computational investigation must be done to better understand the behavior of lattice structures under mechanical loading. Different computational methods lead to different levels of result accuracy and reveal various deformational features. Therefore, this study focuses on a comparison of computational approaches using a quasi-static compression experiment of body-centered cubic (BCC) lattice structure manufactured of stainless steel 316L by selective laser melting technology. Models of geometry in numerical simulations are supplemented with geometrical imperfections that occur on the lattice structure’s surface during the manufacturing process. They are related to the change of lattice struts cross-section size and actual shape. Results of the models supplemented with geometrical imperfections improved the accuracy of the calculations compared to the nominal geometry.

Funder

ESIF, EU Operational Programme Research, Development and Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3