Abstract
Laser cladding with H13 steel powders was performed and the related material transformations were studied for the particles emitted during this process. Fractions of various sizes of the aerosol particles formed during the laser cladding were collected on a cascade impactor, while the electromobility and the aerodynamic size of the particles were measured using a scanning mobility particle spectrometer and an aerodynamic particle sizer, respectively. The aerosol particles deposited onto the impactor plates were analyzed using scanning electron microscopy–energy-dispersive X-ray spectroscopy, as well as total-reflection X-ray fluorescence and X-ray absorption near-edge structure spectroscopy. Both the concentration and mean oxidation state of the major components were correlated with the aerosol particle size. The ultrafine aerosol particles (with a diameter less than about 100 nm) were predominantly oxidized and formed as the result of an evaporation–oxidation–condensation process sequence. The larger particles (>200 nm in geometric diameter) were primarily the residues of the original metal powder and exhibited a composition change as compared to the as-received metal powder. Correlations between the changes in the concentration ratio of the components were detected and explained.
Funder
the Hungarian National Research Development and Innovation Fund
the European Structural and Investment Funds jointly financed by the European Commission and the Hungarian Government
the project CALIPSOplus
EU Framework Programme for Research and Innovation HORIZON 2020
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献