The Flow Stress–Strain and Dynamic Recrystallization Kinetics Behavior of High-Grade Pipeline Steels

Author:

Wang Lei,Ji Lingkang,Yang Kun,Gao Xiongxiong,Chen HongyuanORCID,Chi Qiang

Abstract

The hot deformation behavior of high-grade pipeline steels was studied in the strain rate range of 0.001~0.1 s−1 and the temperature range of 1050~1200 °C by using hot compression tests on a Gleeble 3500 thermomechanical simulator. The flow stress increases with the increase in strain rate and the decrease in deformation temperature, and the deformation activation energy is about 358 kJ/mol. The flows stress–strain behavior of the work-hardening and dynamic recovery (DRV) was calculated using the Estrin–Mecking equation, and the kinetics model of the dynamic recrystallization (DRX) was established based on the Avrami equation through characteristic strains. Furthermore, the flow stress–strain behavior of high-grade pipeline steels was predicted by the established model based on the coupling effects of DRV and DRX. The corresponding predicted results are in good agreement with the experimental results according to standard statistical parameters analysis. Finally, the economic strain (ε3) is proposed by the third derivative of the given kinetic model. Based on these calculation results, when the economic strain (ε3) is reached, uniform and refined DRX grains can be obtained, the energy consumption reduced, and the production costs controlled, which is of great significance to actual factory production.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3