Effect of Ultra-High Pressure Sintering and Spark Plasma Sintering and Subsequent Heat Treatment on the Properties of Si3N4 Ceramics

Author:

Lv XiaoanORCID,Li Xianhui,Huang Junwei,Ge Changchun,Yu Qi

Abstract

In this study, coarse Beta silicon nitride (β-Si3N4) powder was used as the raw material to fabricate dense Si3N4 ceramics using two different methods of ultra-high pressure sintering and spark plasma sintering at 1550 °C, followed by heat treatment at 1750 °C. The densification, microstructure, mechanical properties, and thermal conductivity of samples were investigated comparatively. The results indicate that spark plasma sintering can fabricate dense Si3N4 ceramics with a relative density of 99.2% in a shorter time and promote α-to-β phase transition. Coarse β-Si3N4 grains were partially fragmented during ultra-high pressure sintering under high pressure of 5 GPa, thereby reducing the number of the nucleus, which is conducive to the growth of elongated grains. The UHP sample with no fine α-Si3N4 powder addition achieved the highest fracture strength (822 MPa) and fracture toughness (6.6 MPa·m1/2). The addition of partial fine α-Si3N4 powder facilitated the densification of the SPS samples and promoted the growth of elongated grains. The β-Si3N4 ceramics SPS sintered with fine α-Si3N4 powder addition obtained the best comprehensive performance, including the highest density of 99.8%, hardness of 1890 HV, fracture strength of 817 MPa, fracture toughness of 6.2 MPa·m1/2, and thermal conductivity of 71 W·m−1·K−1.

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Effect of Si3N4 nanowires on the mechanical properties and dielectric constant of porous Si3N4 ceramics

2. Preparation, microstructure, and properties of GPS silicon nitride ceramics with beta-Si3N4 seeds and nanophase additives;Jiang;Int. J. Appl. Ceram. Technol.,2022

3. Promising high-thermal-conductivity substrate material for high-power electronic device: silicon nitride ceramics

4. Opportunities for Enhancing the Thermal Conductivity of SiC and Si3N4 Ceramics Through Improved Processing;Haggerty;J. Am. Ceram. Soc.,1995

5. Development of high-thermal-conductivity silicon nitride ceramics;You;J. Asian Ceram. Soc.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3