Environmental Impacts of Photovoltaic Energy Storage in a Nearly Zero Energy Building Life Cycle

Author:

Vanova RozaliaORCID,Nemec MiroslavORCID

Abstract

Climate change, the economic crisis and the current geopolitical situation are the biggest challenges of today. They participate to a fundamental extent in the creation of international policies. Renewable energy sources are thus gaining worldwide popularity. The paper deals with the assessment of the impact of four selected stages of the life cycle of a NZEB building on the environment in 13 impact categories. The analysis is performed in accordance with the LCA method using the attributional modeling approach. The results show the partial and total shift of impacts on the environment of photovoltaic energy storage in comparison with photovoltaic energy export across the building life cycle. Along the climate change impact reduction as a positive effect on the environment, a substantial impact increase is observed on the depletion of abiotic resources. Results also show the total environmental impact of the building life cycle, considering the use of stored energy in a lithium-based battery as being beneficial in most categories despite the relatively high impact increment in the stage of replacement.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3