High-Temperature Mechanical Properties of Stress-Relieved AlSi10Mg Produced via Laser Powder Bed Fusion Additive Manufacturing

Author:

Lehmhus Dirk,Rahn Thomas,Struss Adrian,Gromzig Phillip,Wischeropp Tim,Becker Holger

Abstract

The present study is dedicated to the evaluation of the mechanical properties of an additively manufactured (AM) aluminum alloy and their dependence on temperature and build orientation. Tensile test samples were produced from a standard AlSi10Mg alloy by means of the Laser Powder Bed Fusion (LPBF) or Laser Beam Melting (LBM) process at polar angles of 0°, 45° and 90°. Prior to testing, samples were stress-relieved on the build platform for 2 h at 350 °C. Tensile tests were performed at four temperature levels (room temperature (RT), 125, 250 and 450 °C). Results are compared to previously published data on AM materials with and without comparable heat treatment. To foster a deeper understanding of the obtained results, fracture surfaces were analyzed, and metallographic sections were prepared for microstructural evaluation and for additional hardness measurements. The study confirms the expected significant reduction of strength at elevated temperatures and specifically above 250 °C: Ultimate tensile strength (UTS) was found to be 280.2 MPa at RT, 162.8 MPa at 250 °C and 34.4 MPa at 450 °C for a polar angle of 0°. In parallel, elongation at failure increased from 6.4% via 15.6% to 26.5%. The influence of building orientation is clearly dominated by the temperature effect, with UTS values at RT for polar angles of 0° (vertical), 45° and 90° (horizontal) reaching 280.2, 272.0 and 265.9 MPa, respectively, which corresponds to a 5.1% deviation. The comparatively low room temperature strength of roughly 280 MPa is associated with stress relieving and agrees well with data from the literature. However, the complete breakdown of the cellular microstructure reported in other studies for treatments at similar or slightly lower temperatures is not fully confirmed by the metallographic investigations. The data provide a basis for the prediction of AM component response under the thermal and mechanical loads associated with high-pressure die casting (HPDC) and thus facilitate optimizing HPDC-based compound casting processes involving AM inserts.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3