Preparation and Application of Foaming Agent Based on the Compound System of Short-Chain Fluorocarbon and Soybean Residue Protein

Author:

Song NingORCID,Li Zhihe,Wang Shaoqing,Xiong Yuanliang

Abstract

This study provides a new idea for the design of an advanced foaming agent with soybean residue protein (SRP) as a potential protein source. In order to achieve the most effective foaming performance, we employed the novel approach of response surface methodology (RSM) to improve important process parameters in a hot-alkali experiment. The experimental results showed that the optimum reaction parameters of pH and temperature were pH 10.2 and 50.5 °C, respectively, which, when continued for 3 h, led to the highest foaming property of the SRP foaming agent (486 mL). Based on the scheme, we also designed an experiment whereby we incorporated 1.0g/L FS-50 into the SRP foaming agent (SRP-50) to achieve higher foaming capacity compared with the commercial foaming agent. This foaming agent was cheaper than commercial vegetable protein foaming agents (12 USD/L) at 0.258 USD/L. Meanwhile, the properties of foam concrete prepared using SRP-50 were studied in comparison with a commercial vegetable protein foaming agent (PS). The results demonstrated that the foam prepared using SRP-50 had better stability, and the displacement of the foam decreased by 10% after 10 min. During the curing period, the foam concrete possesseda compressive strength of 5.72 MPa after 28 days, which was an increase from 2.95 MPa before. The aperture of the foam ranged from 100 to 500 μm with the percentage increasing up to 71.5%, which indicated narrower pore-size distribution and finer pore size. In addition, the shrinkage of the foam concrete was also improved. These findings not only achieve the utilization of waste but also provide a new source for protein foaming agents.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3