Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions

Author:

Wang Yizhen,Yin Jianping,Zhang Xuepeng,Yi Jianya

Abstract

Aiming at the dynamic penetration process of a shaped-charge jet, we proposed a mathematical model for the penetration of a jet under dynamical conditions based on the theory of virtual origin and the Bernoulli equation taking into account the jet and target intensities. The dynamic penetration process of the jet was divided according to the penetration channel of the jet into the static target. The dynamic penetration model of the jet based on the unperturbed section and perturbed section was established. The penetration depth variation in the shaped-charge jet vertically penetrating target plates with different moving speeds (150~400 m/s) was analyzed by finite element software. The dynamic penetration model shows that with the increase in the target moving speed, the disturbed time of the jet continuously advances, and the dynamic penetration depth continuously decreases; as the velocity of the target increases, the penetration length of the unperturbed jet decreases and then becomes stable, while the penetration length of the perturbed jet decreases. The results showed that the mathematical model is consistent with the finite element simulation, and that the mathematical model can effectively characterize the penetration depth of the unperturbed and disturbed jet portions, adequately explain the dynamic response behavior of the jet penetrating a moving target, and effectively predict the dynamic penetration depth of the jet under the influence of the target movement.

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. Study on damage effectiveness of shaped warhead in air defense and anti-missile;Wang;Ordnance Ind. Autom.,2018

2. Relative performance of anti-air missile warheads;Waggener;Proceedings of the 19th International Symposium on Ballistics,2001

3. Study on fragment focusing mode of air-defense missile warhead;Liu;Propellants Explos. Pyrotech.,1998

4. Aimable fragmenting warhead;Held;Proceedings of the 13th International Symposium on Ballistics,1992

5. Numerical simulation and experimental investigation of initiation of shielded composition b impacted by shaped charge jet;Wang;Explos. Mater.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3