Abstract
This manuscript optimizes the conjugate heat transfer and thermal-stress analysis for hydromagnetic Brinkman fluid with chemical reaction in permeable media. The governing equations of non-Newtonian Brinkman fluid have been traced out and then fractional derivative approach, namely, Caputo–Fabrizio, is invoked, subject to the exponential boundary conditions. The Fourier Sine and Laplace transforms are applied on governing partial differential equations for generating the analytical results of temperature, concentration and velocity. A comparative study of velocity field is investigated for the sake of long memory and hereditary properties. The analytical investigation of temperature, concentration and velocity field have strong effects on chemical reaction. The graphical depiction of vibrant characteristics of hydromagnetic Brinkman fluid with chemical reaction in permeable media is exhibited for disclosing the sensitivities of different embedded rheological parameters of fluid flow. The results suggested that temperature distribution for smaller and larger Prandtl number has disclosed quick and thicker heat diffusivity.
Funder
Deansip of Scientific Research at King Faisal University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献