Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network

Author:

Golab AntoniaORCID,Zwickl-Bernhard SebastianORCID,Auer HansORCID

Abstract

Given the ongoing transformation of the transport sector toward electrification, expansion of the current charging infrastructure is essential to meet future charging demands. The lack of fast-charging infrastructure along highways and motorways is a particular obstacle for long-distance travel with battery electric vehicles (BEVs). In this context, we propose a charging infrastructure allocation model that allocates and sizes fast-charging stations along high-level road networks while minimizing the costs for infrastructure investment. The modeling framework is applied to the Austrian highway and motorway network, and the needed expansion of the current fast-charging infrastructure in place is modeled under different future scenarios for 2030. Within these, the share of BEVs in the car fleet, developments in BEV technology and road traffic load changing in the face of future modal shift effects are altered. In particular, we analyze the change in the requirements for fast-charging infrastructure in response to enhanced driving range and growing BEV fleets. The results indicate that improvements in the driving range of BEVs will have limited impact and hardly affect future costs of the expansion of the fast-charging infrastructure. On the contrary, the improvements in the charging power of BEVs have the potential to reduce future infrastructure costs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference83 articles.

1. Global EV Outlook 2020https://www.iea.org/reports/global-ev-outlook-2020

2. Low-mobility: The future of transport

3. Quantifying the Societal Benefits of Electric Vehicles

4. Research for TRAN Committee-Charging Infrastructure for Electric Road Vehicles;Spöttle,2018

5. Norwegen—Verteilung der Antriebsartenhttps://de.statista.com/statistik/daten/studie/695029/umfrage/marktanteil-von-elektrofahrzeugen-in-norwegen/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3