Detailed Assessment of Modulation Strategies for Hexverter–Based Modular Multilevel Converters

Author:

Robles-Campos Héctor R.ORCID,Mancilla-David Fernando

Abstract

Modular multilevel converters are playing a key role in the present and future development of topologies for medium–to–high–power applications. Among this category of power converters, there is a direct AC–AC modular multilevel converter called “Hexverter”, which is well suited to connect three–phase AC systems operating at different frequencies. This topology is the subject of study in this manuscript. The complete Hexverter system is composed of an Hexverter power converter and several control layers, namely, a “virtual VC2 controller”, a branch current controller in a two–frequency dq reference frame, a modulator, and a voltage balancing algorithm. The paper presents a thorough description and analysis of the entire Hexverter system, providing research contributions in three key aspects: (i) modeling and control in a unified two–frequency dq framework; (ii) developing a “virtual VC2 controller” to dynamically account for Hexverter’s active power losses allowing to achieve active power balance on the fly; and (iii) a comparative evaluation of modulation strategies (nearest level control and phase disposition–sinusoidal pulse width modulation). To this end, a detailed switched simulation was implemented in the PSCAD/EMTDC software platform. The proposed “virtual VC2 controller” is evaluated through the measurement of its settling time and calculation of active power losses. Each modulation technique is assessed through total harmonic distortion and frequency spectrum of the synthesized three–phase voltages and currents. The results obtained suggest that the control scheme is able to properly regulate the Hexverter system under both modulation strategies. Furthermore, the “virtual VC2 controller” is able to accurately determine the active power loss, which allows the assessment of the efficiency of the modulation strategies. The nearest level control technique yielded superior efficiency.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3