Assessing the Siting Potential of Low-Carbon Energy Power Plants in the Yangtze River Delta: A GIS-Based Approach

Author:

Peng YechennanORCID,Azadi Hossein,Yang Liang (Emlyn)ORCID,Scheffran JürgenORCID,Jiang Ping

Abstract

China announced a target of achieving carbon neutrality by 2060. As one of the most promising pathways to minimize carbon emissions, the low-carbon electricity supply is of high consideration in China’s future energy planning. The main purpose of this study is to provide a comparative overview of the regional siting potential of various low-carbon power plants in the Yangtze River Delta of China. First, unsuitable zones for power plants are identified and excluded based on national regulations and landscape constraints. Second, we evaluate the spatial siting potential of the seven low-carbon energy power plants by ranking their suitability with geographic information system (GIS)-based hierarchical analysis (AHP). The results revealed that around 78% of the area is suitable for power plant siting. In summary, biomass power plants have high siting potential in over half of the spatial areas. Solar photovoltaic and waste-to-electricity are encouraged to establish in the long-term future. The maps visualize micro-scale spatial siting potential and can be coupled with the sustainability assessments of power plants to design an explicit guiding plan for future power plant allocation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference84 articles.

1. Going Climate-Neutral by 2050: A Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate-Neutral EU Economy,2019

2. China Nationally Determined Contribution (NDC) and Domestic 14th Power Five-Year-Plan (FYP),2020

3. Chinese Economic Growth and Fluctuations

4. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3