A Lab on a Chip Experiment for Upscaling Diffusivity of Evolving Porous Media

Author:

Poonoosamy JennaORCID,Lu RenchaoORCID,Lönartz Mara IrisORCID,Deissmann GuidoORCID,Bosbach Dirk,Yang YuankaiORCID

Abstract

Reactive transport modelling is a powerful tool to assess subsurface evolution in various energy-related applications. Upscaling, i.e., accounting for pore scale heterogeneities into larger scale analyses, remains one of the biggest challenges of reactive transport modelling. Pore scale simulations capturing the evolutions of the porous media over a wide range of Peclet and Damköhler number in combination with machine learning are foreseen as an efficient methodology for upscaling. However, the accuracy of these pore scale models needs to be tested against experiments. In this work, we developed a lab on a chip experiment with a novel micromodel design combined with operando confocal Raman spectroscopy, to monitor the evolution of porous media undergoing coupled mineral dissolution and precipitation processes due to diffusive reactive fluxes. The 3D-imaging of the porous media combined with pore scale modelling enabled the derivation of upscaled transport parameters. The chemical reaction tested involved the replacement of celestine by strontianite, whereby a net porosity increase is expected because of the smaller molar volume of strontianite. However, under our experimental conditions, the accessible porosity and consequently diffusivity decreased. We propose a transferability of the concepts behind the Verma and Pruess relationship to be applied to also describe changes of diffusivity for evolving porous media. Our results highlight the importance of calibrating pore scale models with quantitative experiments prior to simulations over a wide range of Peclet and Damköhler numbers of which results can be further used for the derivation of upscaled parameters.

Funder

Initiative and Networking Fund of the Helmholtz Association

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3