Planning of Multi-Vector Energy Systems with High Penetration of Renewable Energy Source: A Comprehensive Review

Author:

Onen Patrick Sunday,Mokryani GeevORCID,Zubo Rana H. A.ORCID

Abstract

The increasing use of high shares of renewable energy sources (RESs) in the current electricity network introduces challenges to the design and management of the electricity network due to the variation and uncertainty nature of the RESs. Some existing energy infrastructures, such as heat, gas, and transport, all have some level of inbuilt storage capacity and demand response (DR) potentials that can be exploited in an energy system integration to give the electricity network some level of flexibility and promote an efficient transition to a low-carbon, resilient, and robust energy system. The process of integrating different energy infrastructure is known as multi-vector energy systems (MESs). This paper reviews different studies on the planning of MESs using the energy hubs (EHs) approach. The EHs model used in this paper links different energy vectors such as gas, electricity, and heat energy vectors in its planning model, as opposed to planning each energy vector independently, in order to provide more flexibility in the system, minimise total planning cost, and encourage high penetration of renewable energy source for future energy demands. In addition, different uncertainty modelling and optimization methods that have been used in past studies in planning of EH are classified and reviewed to ascertain the appropriate techniques for addressing RESs uncertainty when planning future EH. Numerical results show 12% reduction in the planning cost in the case of integrated planning with other energy vectors compared to independent planning.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference101 articles.

1. A review on green energy potentials in Iran

2. Potential energy solutions for better sustainability;Dincer,2018

3. Summary for policymakers;Field,2014

4. DTU International Energy Report 2015: Energy Systems Integration for the Transition to Non-Fossil Energy Systems orbit.dtu.dk

5. Holistic modelling techniques for the operational optimisation of multi-vector energy systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3