Synthesis and Mechanical Properties of Polyacrylamide Gel Doped with Graphene Oxide

Author:

Zhang Hai-Peng,Cao Jing-Jing,Jiang Wen-Bing,Yang Yu-Qi,Zhu Bo-Yuan,Liu Xiao-Yu,Wu Yang,Sun Xin,Essouma Ariane Felicite Bibiche EssoumaORCID,Liu Jian,Xing Ting-Yan

Abstract

Polyacrylamide (PAM)/polyethyleneimine (PEI) gels doped with graphene oxide (GO) were prepared. Their structure and properties were systematically studied by X-ray diffraction (XRD), Fourier transition infrared spectrum (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and rheological experiments. The results showed that the graphene oxide (GO) nanosheets were significantly involved in the cross-linking reaction between the main agent (PAM) and the cross-linker (PEI), serving as multi-functional cross-linker and effective reinforcing nanofillers. Increasing the main agent and cross-linker content, the strength of gels was enhanced effectively. The GO could effectively adjust the strength and the gelation time to exhibit characteristics of weak gel, thanks to the improved three-dimensional honeycombed structure with controllable pore size. The DSC confirmed that the PAM/PEI/GO gel exhibited excellent thermal stability and did not dehydrate above 170 °C. This work provides theoretical support for further optimization of polyacrylamide gel used in ultra-deep and high-temperature reservoirs for water control.

Funder

Innovation Environment (Talents, bases) Construction Special Project--Natural Science Plan (Natural Science Fund) Youth Science Fund Project of Xingjiang

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3