Optimization of Load Sharing in Compressor Station Based on Improved Salp Swarm Algorithm

Author:

Zhang JiaweiORCID,Li Lin,Zhang Qizhi,Wu Yanbin

Abstract

In long-distance gas transmission pipelines, there are many booster compressor stations consisting of parallel compressors that provide pressure for the delivery of natural gas. So, it is economically important to optimize the operation of the booster compressor station. The booster compressor station optimization problem is a typical mixed integer nonlinear programming (MINLP) problem, and solving it accurately and stably is a challenge. In this paper, we propose an improved salp swarm algorithm based on good point set, adaptive population division and adaptive inertia weight (GASSA) to solve this problem. In GASSA, three improvement strategies are utilized to enhance the global search capability of the algorithm and help the algorithm jump out of the local optimum. We also propose a constraint handling approach. By using semi-continuous variables, we directly describe the on or off state of the compressor instead of using auxiliary binary variables to reduce the number of variables and the difficulty of solving. The effectiveness of GASSA is firstly verified using eight standard benchmark functions, and the results show that GASSA has better performance than other selected algorithms. Then, GASSA is applied to optimize the booster compressor station load distribution model and compared with some well-known meta-heuristic algorithms. The results show that GASSA outperforms other algorithms in terms of accuracy and reliability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compressor/pump stations in natural gas transmission pipelines;Advances in Natural Gas: Formation, Processing, and Applications. Volume 6: Natural Gas Transportation and Storage;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3