Variable Incremental Controller of Permanent-Magnet Synchronous Motor for Voltage-Based Flux-Weakening Control

Author:

Lee HyunjaeORCID,Lee Gunbok,Kim Gildong,Shon Jingeun

Abstract

This study presents a variable incremental controller for flux-weakening control in the high-speed operation area of a permanent-magnetic synchronous motor (PMSM). In general, voltage-based flux-weakening control utilizes a reference voltage and a PI controller to generate a flux component current. In this paper, the voltage-based flux-weakening control is performed using the variable incremental controller instead of the PI controller. The variable incremental controller can control the flux component current using only the maximum speed and maximum current of the motor. A method for properly setting an appropriate variable incremental controller using acceleration is additionally presented. A variable incremental controller is applied and, accordingly, the overshoot of the motor speed can be reduced and the speed error of the motor can be minimized by reducing the difference between the actual motor and targeted accelerations. This method can simplify the design of a controller that utilizes flux-weakening control and can be applied to railroad cars whose acceleration does not alter frequently to increase the effect of motor control.

Funder

A grant from R&D Programof the Korea Railroad Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. 2050 Carbon Neutral Strategy of the Republic of Korea towards a Sustainable and Green Society;The Government of the Republic of Korea,2020

2. America’s Zero Carbon Action Plan,2020

3. A PWM strategy for dual three-phase PMSM using 12-sector vector space decomposition for electric ship propulsion

4. A Simplified Space Vector Pulse Width Modulation Implementation in Modular Multilevel Converters for Electric Ship Propulsion Systems

5. Optimization of Powertrain in EV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3