An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms

Author:

Akhtar ShamimORCID,Sujod Muhamad Zahim Bin,Rizvi Syed Sajjad HussainORCID

Abstract

Data-driven electrical energy efficiency management is the emerging trend in electrical energy forecasting and management. This fusion of data science, artificial intelligence, and electrical energy management has turned out to be the most precise and robust energy management solution. The Smart Energy Informatics Lab (SEIL) of the Indian Institute of Technology (IIT) conducted an experimental study in 2019 to collect massive data on university campus energy consumption. The comprehensive comparative study preparatory to the recommendation of the best candidate out of 24 machine learning algorithms on the SEIL dataset is presented in this work. In this research work, an exhaustive parametric and empirical comparative study is conducted on the SEIL dataset for the recommendation of the optimal machine learning algorithm. The simulation results established the findings that Bagged Trees, Fine Trees, and Medium Trees are, respectively, the best-, second-best-, and third-best-performing algorithms in terms of efficacy. On the contrary, a reverse ranking is observed in terms of efficiency. This is grounded in the fact that Bagged Trees is most effective algorithm for the said application and Medium Trees is the most efficient one. Likewise, Fine Trees has the optimum tradeoff between efficacy and efficiency.

Funder

Universiti Malaysia Pahang Post Graduate Research Grant

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3