Study on the Classification Performance of Underwater Sonar Image Classification Based on Convolutional Neural Networks for Detecting a Submerged Human Body

Author:

Nguyen Huu-ThuORCID,Lee Eon-HoORCID,Lee SejinORCID

Abstract

Auto-detecting a submerged human body underwater is very challenging with the absolute necessity to a diver or a submersible. For the vision sensor, the water turbidity and limited light condition make it difficult to take clear images. For this reason, sonar sensors are mainly utilized in water. However, even though a sonar sensor can give a plausible underwater image within this limitation, the sonar image’s quality varies greatly depending on the background of the target. The readability of the sonar image is very different according to the target distance from the underwater floor or the incidence angle of the sonar sensor to the floor. The target background must be very considerable because it causes scattered and polarization noise in the sonar image. To successfully classify the sonar image with these noises, we adopted a Convolutional Neural Network (CNN) such as AlexNet and GoogleNet. In preparing the training data for this model, the data augmentation on scattering and polarization were implemented to improve the classification accuracy from the original sonar image. It could be practical to classify sonar images undersea even by training sonar images only from the simple testbed experiments. Experimental validation was performed using three different datasets of underwater sonar images from a submerged body of a dummy, resulting in a final average classification accuracy of 91.6% using GoogleNet.

Funder

Kongju National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3