Development of a Digital Research Assistant for the Management of Patients’ Enrollment in Oncology Clinical Trials within a Research Hospital

Author:

Cesario AlfredoORCID,Simone Irene,Paris Ida,Boldrini LucaORCID,Orlandi ArmandoORCID,Franceschini GianlucaORCID,Lococo FilippoORCID,Bria Emilio,Magno StefanoORCID,Mulè Antonino,Santoro AngelaORCID,Damiani AndreaORCID,Bianchi Daniele,Picchi Daniele,Rasi Guido,Daniele Gennaro,Fabi Alessandra,Sergi Paolo,Tortora Giampaolo,Masetti Riccardo,Valentini Vincenzo,D’Oria MarikaORCID,Scambia Giovanni

Abstract

Clinical trials in cancer treatment are imperative in enhancing patients’ survival and quality of life outcomes. The lack of communication among professionals may produce a non-optimization of patients’ accrual in clinical trials. We developed a specific platform, called “Digital Research Assistant” (DRA), to report real-time every available clinical trial and support clinician. Healthcare professionals involved in breast cancer working group agreed nine minimal fields of interest to preliminarily classify the characteristics of patients’ records (including omic data, such as genomic mutations). A progressive web app (PWA) was developed to implement a cross-platform software that was scalable on several electronic devices to share the patients’ records and clinical trials. A specialist is able to use and populate the platform. An AI algorithm helps in the matchmaking between patient’s data and clinical trial’s inclusion criteria to personalize patient enrollment. At the same time, an easy configuration allows the application of the DRA in different oncology working groups (from breast cancer to lung cancer). The DRA might represent a valid research tool supporting clinicians and scientists, in order to optimize the enrollment of patients in clinical trials. User Experience and Technology The acceptance of participants using the DRA is topic of a future analysis.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3