Abstract
An analysis of the invariance properties of self-adjoint extensions of symmetric operators under the action of a group of symmetries is presented. For a given group G, criteria for the existence of G-invariant self-adjoint extensions of the Laplace–Beltrami operator over a Riemannian manifold are illustrated and critically revisited. These criteria are employed for characterising self-adjoint extensions of the Laplace–Beltrami operator on an infinite set of intervals, Ω , constituting a quantum circuit, which are invariant under a given action of the group Z . A study of the different unitary representations of the group Z on the space of square integrable functions on Ω is performed and the corresponding Z -invariant self-adjoint extensions of the Laplace–Beltrami operator are introduced. The study and characterisation of the invariance properties allows for the determination of the spectrum and generalised eigenfunctions in particular examples.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献