Retardant Effects of Collapsing Dynamics of a Laser-Induced Cavitation Bubble Near a Solid Wall

Author:

Li ,Duan ,Zhang ,Tang ,Zhang

Abstract

In the present paper, the dynamic behavior of cavitation bubbles near a wall is experimentally investigated with a focus on the retardant effects of the wall on the collapsing dynamics of the bubble. In the present experiments, a cavitation bubble is generated by a focused laser beam with its behavior recorded through high-speed photography. During the data analysis, the influences of non-dimensional bubble–wall distance on the bubble collapsing dynamics are qualitatively and quantitatively investigated in terms of the interface evolution, the velocities of the poles, and the movement of the bubble centroid. Our results reveal that the presence of the wall could significantly affect the collapsing characteristics, leading to a dramatic difference between the moving velocities of interfaces near and away from the wall. With the decrease of the bubble–wall distance, the effects will be gradually strengthened with a rapid movement of the bubble centroid during the final collapse. Finally, a physical interpretation of the phenomenon is given based on the bubble theory, together with a rough estimation of the induced water hammer pressure by the bubble collapse.

Funder

National Natural Science Foundation of China

Open Research Fund Program of Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3