Abstract
In this manuscript, the numerical coal-rock combined bodies with different height ratios of rock part to coal-rock combined body (HRRC) were established by particle flow code (PFC) firstly, and then the influence of different HRRC on mechanical properties and numerical acoustic emission (AE) characteristics of coal-rock combined bodies were investigated. Finally, the damage constitutive model of the coal-rock combined body was discussed. The research results show that with the increase of the HRRC, the UCS and the elastic modulus (E) of the combined coal-rock bodies increased. The failure of coal-rock combined bodies is mainly focused on the coal body. The evolution law of AE hits of coal-rock combined bodies have three stages, named stable stage, rapid ascending stage, and rapid descending stage. The damage variable curves of coal-rock combined body have two stages, named slowly damage stage and sharply damage stage. The damage constitutive relation based on AE hits can well reflect the stress-strain relationships with a lower HRRC. However, for a higher HRRC, the damage constitutive equation is not accurately and the damage of the rock part in the coal-rock-combined body should be considered.
Funder
Liaocheng University Research Fund
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献