Abstract
The Split Hopkinson Pressure Bar (SHPB) test device is an important tool to study the dynamic characteristics of concrete materials. Inertial effect is one of the main factors that cause inaccurate results in SHPB tests of concrete materials. To solve this problem, Large-diameter SHPB tests on concrete and mortar were performed. A dynamic increase factor (DIF) model considering strain rate effect and inertia effect was established. This model provides a scientific reference for studying the dynamic mechanical properties of concrete materials. The experimental results indicate that the strain rate effect of concrete is more sensitive than that of mortar, but the inertia effect of mortar is more sensitive than that of concrete. Under the same strain rate, the energy utilization rate, average fragment size, and impact potentiality of mortar are higher than concrete.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Shenzhen Municipality
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献